At the end of talks from Julien R Foy, about Existensial Types Make OOP Great Again he discussed about how abstract type members can be used to represent object algebra that nicely solved expression problem.
In the first tab, the common approach is to encode expression using sealed trait and case classes. With this problem, you can not easily add multiplication operation for example, because then you have to rewrite all the interpreters, or even impossible if the sealed trait is not yours.
The second approach, using object algebras supposed to be more flexible, well watch the talk, I need to understand it better myself :)
sealed trait Expr
case class Lit(value : Int) extends Expr
case class Add(a : Expr, b: Expr) extends Expr
def interpret[A](lit: Int => A, add: (A, A) => A): Expr => A = {
case Lit(value) => lit(value)
case Add(a, b) => add(interpret(lit,add)(a),interpret(lit,add)(b))
}
def eval = interpret[Int]((x:Int)=>x, (a:Int,b:Int) => a + b)
def show = interpret[String]((x:Int)=>s"$x", (a:String,b:String) => s"$a + $b")
val program = Add(Lit(2), Add(Lit(3), Lit(4)))
println(show(program) + " = " + eval(program))
trait ExprDsl {
type Expr
def Lit(value: Int) : Expr
def Add(a: Expr, b: Expr) : Expr
}
trait Eval extends ExprDsl {
type Expr = Int
def Lit(value: Int) = value
def Add(a: Int, b: Int) = a + b
}
trait Show extends ExprDsl {
type Expr = String
def Lit(value: Int) = s"$value"
def Add(a: Expr, b: Expr) = s"$a + $b"
}
trait Program extends ExprDsl {
val expression = Add(Add(Lit(3), Lit(4)), Lit(5))
}
new Program with Show {
println(s"$expression")
}
new Program with Eval {
println(s"$expression")
}